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LETTER TO THE EDITOR 
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Abstract. A simple self-consistent mean-field theory for Lhe effective nonlinear response in 
random mixtures of linear and smngly nonlinear conductors is proposed. Results are in much 
kttet agreement with published simulation data than all the previously proposed approximations. 
The theory thus represents a far superior approximation to the Clausius-Mossotti approximation 
and effective-medium approximation previously proposed. 

Recently, random composites consisting of two or more different kinds of nonlinear 
conductor have attracted much attention [ l ,  21. In strongly nonlinear composites, 
components with J-E relations of the form J = xIEIBE, where J is the current density 
and E is the local field, are considered. By suitably tuning the system parameters such 
as volume fraction and the nonlinear conductivities x of the constituents and the external 
applied field, it is possible to control the effective nonlinear response of the nonlinear 
mixture. The idea of controlling the physical properties of a novel material by putting 
together two different materials to form an inhomogeneous medium has been repeatedly 
applied to different areas of condensed matter physics. Examples include semiconductor 
superlattices [3], linear [4] and weakly nonlinear random composites [5], magnetic granular 
materials in which giant magnetoresistances have been observed [6 ] ,  and photonic band-gap 
materials in which two different dielectrics are arranged in a periodic structure [7]. 

Straley and Kenkel [XI studied the percolating effects in systems in which a strongly 
nonlinear conductor is mixed with an insulator. Using standard methods, such as scaling and 
real-space renormalization groups, in statistical physics, they studied the critical behaviour 
of the effective response near the percolation threshold. They also established the uniqueness 
of the solution to the problem of nonlinear response in such systems. Meir and co- 
workers [9] carried out similar studies using series analysis. For systems consisting of two 
kinds of material with the same nonlinearity but different conductivities, Blumenfeld and 
Bergman [IO] developed a perturbative method, based on the difference of the conductivities, 
to calculate the effective response. Numerical simulations on random nonlinear resistor 
networks have also been performed [l l] .  Recently, Hui and co-workers [I21 have developed 
a mean-field theory, which treats each component as  a linear conductor with a self- 
consistently determined field-dependent conductivity, for the effective nonlinear response 
and results are in remarkable agreement with simulation data. 

Levy and Bergman [I31 have performed numerical simulations in systems consisting of 
one linear component and one strongly nonlinear component. Results are compared with 
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the Clausius-Mossotti (CM) and effective-medium approximation (EMA). The comparisons 
between theories and simulation data are far from being satisfactory (see figures in [13]). 
The EMA, which works well in linenr random composites, only captures the trend, while 
the CM approximation fails badly in high external fields or/and high concentrations of the 
nonlinear conductor. The aim of this letter is to propose a simple mean-field theory far the 
effective response, which gives remarkable improvement when compared with published 
simulation data. 

Consider a binary composite consisting of a concentration p of strongly nonlinear 
conductor with a J-E relation of the form J = xn[EISE, and concentration 1 - p of 
linear conductor with a J-E relation J = u b E .  where Ut, is the linear conductivity. The 
mean-field theory amounts to approximating the nonlinear component as conductors with 
the property 

where (lEIP)a is an average of the local electric field taken over the volume occupied 
by the nonlinear component and will be determined self-consistently. In equation (I), 

= x.(IEIfi), and the nonlinear component is treated as a linear conductor with a field- 
dependent conductivity &. The effective field-dependent conductivity ue,, is defined by 
treating the inhomogeneous medium as a uniform system with a J-E relation of the form 

J % X . ( ~ E I ~ ) ~ E  =CUE, (1) 

J = O;ff(EO)Eo (2) 
where E is the external applied field. In general, ue,,(E0) depends on the concentrations 
of the constituents and the microgeometry within the composite, as well as the external 
applied field. 

The effective response of a binary system consisting of materials with conductivities ~7~ 
and Ob can be calculated using standard approximations [2]. such as the Maxwell-Garnett 
approximation (MGA) and the effective-medium approximation (EMA), developed in linear 
random composites. Within EMA in two dimensions, uef, is given by [2 ]  

ueff = - 2 f ) ( u b  - Xu(IEI’)o) 

+iJ(1 - 2P)’(Ub - XO(IEI%)~ -t 4%Xa(IEI%t. (3) 
To determine the averaged local field (IEIB), self-consistently, we invoke a decoupling 

scheme developed in weakly nonlinear composites [14,15,16]: 

The last equality follows from an established result in linear random composites giving ue,f 
in terms of the local fields: 

where u(r) takes on the value 0, ( o b )  for r in regions occupied by the nonlinear (linear) 
component and V is the size of the composite. Working out the derivative using equation (3) 
for ue,f, ( ] E l z ) ,  can then be determined by solving the self-consistent equation: 

(6) 
For given o b ,  ,yo and p. equation (6) can be solved, at least numerically, for ( [ E l z ) .  as a 
function of EO and the concentration p ,  Substituting the result back into equation (3). ue,, 
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can be obtained as a function of p and Eo. Equations (3), (4) and (6) thus provide a simple 
self-consistent scheme for estimating the effective nonlinear response in composites of one 
linear and one nonlinear conductor. 

Figure 1. The effective nonlinear response acff in the case of cubic nonlinearity is plotted as 
a function of the concentration of the nonlinear component for fow different values of- E" in 
the high-field regime. The parameten are chosen to be xn = I and ab = 1 and are identical 
to those in 1131. The triangles are simulation data for the case Eo = 9.1 taken from [I31 and 
are reproduced here for ~~mpar i son .  The inset shows a comparison among the Simuliltion data 
(triangles), results obtained from CM (dashed line) and EMA (dotted line) expressions given by 
[13], md the results of the present theory (solid line). far Eo = 9.1. 
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Figure 2. The effective nonlinear response uqj in the case of cubic nonlinearity is plotted as a 
function of the concentration of the nonlinw component for four different values of Eo in the 
low-heid regime. The p a m e t e n  are the same as in figure I. 
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Figure 3. The effective nonlinex response us,, is plotted as a function of the concentration of 
the nonlinear component for the m e  of B =  4. The value Eo = 3.0 corresponds to a high-field 
case and the inset with Eo = 0.5 comsponds to a low-field case. 

Ti7 compare with published simulation data, we performed model calculations based 
on our theory with parameters used by Levy and Bergman in their simulations [I31 in 
two-dimensional random nonlinear resistor networks. The conductivities are chosen to be 
xa = I and ob  = 1, and cubic nonlinearity (/3 = 2) is assumed. In this way, the nonlinear 
component is the poorer (better) conductor between the two components in IOW (high) fields. 
Thus by tuning the field, the roles of the conductors can be interchanged. Their proposed 
theories fail in the limit of large contrast between the two components. Figure I shows the 
effective conductivity oeff as a function of p for four values of EO i n  the high-field regime. 
The simulation data for EO = 9.1, which represents the case of largest contrast and hence 
the worse agreement between previous theories and simulation data, are taken from [13] 
and reproduced here for comparison. Our results, when compared to the figures in [13], not 
only reproduce the trend of the data but also give values of uc,f remarkably close to the 
simulation data for this case of highest contrast. For comparison with the approximations 
proposed in [13], the results obtains from the CM and EMA expressions given in 1131 are 
plotted in the inset, together with simulation data and results of the present theory. The 
rapid increase in U<,, near p = 0.5 is a percolating effect in which the better conductor, 
the nonlinear component in this case, forms a connected path across the system. Similar 
agreements are obtained for the other values of EO, though not as surprising as for the 
highest-contrast case shown in the figure. Our theory thus represents a major improvement 
over the existing theories. This should be contrasted with the comparison between theories 
and simulations done in [I31 in which the theories only reproduce the trend of the data 
qualitatively. The success of the present theory can be attributed to the more accurately 
determined local field within our selfconsistency scheme. 

Figure 2 shows results of similar model calculations in the low-field regime, again for 
four different values of EO. When compared with published data (see figure 6 of [13]), 
the results give much better agreement than the other theories. The decrease in as p 
increases is expected as the nonlinear conductor is the poorer conductor in this case. Through 
the decoupling scheme introduced in equation (4). we can c a y  out model calculations for 
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arbitrary nonlinearity. Figure 3 shows typical results for the case of 0 = 4 for Eo in both 
the high- and low-field (see inset) regimes. Levy and Bergman have also carried out some 
simulations for this case and our results describe their data reasonably well. 

In summary. we have introduced a simple self-consistent mean-field theory for 
calculating the effective conductivity of random composites consisting of a linear component 
and a strongly nonlinear conductor with arbitrary nonlinearity. The theory represents a major 
improvement of the other existing theories such as the Clausius-Mossotti and effective- 
medium approximations. Our present theory can be readily generalized to systems with any 
spatial dimensions. It can also be applied to composites in which the constituents satisfy 
a general J-E relation of the form J = u E  + xIEIflE, where both weak and strong 
nonlinearities are envisaged and 0 is arbitrary [17]. 
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